Nowadays, data science teams build a DL model to solve specific NLP tasks. Data-hungry DL models must be fed with large amounts of annotated data, which is time-consuming and costly to acquire since its annotation requires domain expertise. At the same time, business environments are dynamic and complex, making it impractical to collect and label enough data for each scenario in a given domain within a practical time frame. Although much progress has been made in DL for NLP, the current paradigm holdbacks the adoption of NLP based DL/ML in commercial environments. A new set of approaches have emerged with effective transfer learning methods: Embeddings from Language Model (ELMo), Universal Language Model Fine-tuning (ULMFit), Transformer and recently Bidirectional Encoder Representations from Transformers (BERT). These approaches are demonstrating that pre-trained models originally trained on a specific task such as a language model (LM) task can be used successfully for other NLP tasks, outperforming state-of-the-art performance as well as gaining high accuracy with smaller amounts of data when compared to training from scratch In this talk, we present a few solutions and tools based transfer-learning, via NLP Architect library, targeted for a non-DL/NLP expert, that allows to scale and adapt models to new domains by learning from in-domain data with a small amount of labeled examples.

June 26

NLP Stage

NLP-Architect by AI-Lab: An Open Source NLP Library for Developing NLP Solutions

10 mins

Keynote

Mr. Moshe Wasserblat is currently the Natural Language Processing and Deep Learning Research Group Manager for Intel’s Artificial Intelligence Products Group. In his former role, he has been with NICE Systems for more than 17 years, where he founded and led the Speech/Text Analytics Research team. His interests are in the field of speech processing and natural language processing. He was the co-founder coordinator of the EXCITEMENT FP7 ICT program and served as organizer and manager of several initiatives, including many Israeli Chief Scientist programs. He has filed more than 60 patents in the field of Language Technology and also has several publications in international conferences and journals.

Moshe Wasserblat

Deep Learning and NLP Research Manager, INTEL

WANT TO EXPERIENCE OUR SPEAKERS LIVE?

Get industry news and event updates directly to your inbox!

Be the first to hear about our speaker line up, exclusive ticket discounts, networking opportunities, workshop registration plus the latest news in Chat, Voice and Vision!

You can also follow us on our social channels!

  • Facebook
  • Twitter
  • LinkedIn
  • Instagram
  • YouTube